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Glass transition and random walks on complex energy landscapes
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We present a simple mathematical model of glassy dynamics seen as a random walk in a directed weighted
network of minima taken as a representation of the energy landscape. Our approach gives a broader perspective
to previous studies focusing on particular examples of energy landscapes obtained by sampling energy minima
and saddles of small systems. We point out how the relation between the energies of the minima and their
number of neighbors should be studied in connection with the network’s global topology and show how the
tools developed in complex network theory can be put to use in this context.
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The physics of glassy systems, the glass transition, and
the slow dynamics ensuing at low temperatures have been
the subject of a large interest in the past decades [1]. In
particular, special attention has been devoted to the dynamics
of a glassy system inside its configuration space: the idea is
to understand glassy dynamics in terms of the exploration of
a complex rugged energy landscape in which the large num-
ber of metastable states limits the ability of the system to
equilibrate. In the picture of an energy landscape partitioned
into basins of attraction of local minima (“traps”), the dy-
namics of the system is separated into harmonic vibrations
inside traps and jumps between minima [2]. Several models
of dynamical evolution through jumps between traps have
been proposed and studied in order to reproduce the phenom-
enology of the glass transition, pointing out various ingredi-
ents of the ensuing slow dynamics [3]. Moreover, several
works have mapped the energy landscape of small systems
and studied the dynamics through a master equation for the
time evolution of the probability to be in each minimum. The
considered systems range from clusters of Lennard-Jones at-
oms to proteins or heteropolymers [2,4,5]. Studies have also
investigated, among other issues, the detailed structure of the
potential-energy landscape, the substructure of minima, and
the properties of energy barriers between minima in relation
with the dynamics both in real space and in the energy land-
scape [6].

The success of these approaches has recently brought
about a number of studies focusing on the topology of the
network defined by considering the minima as nodes and the
possibility of a jump between two minima as a (weighted
directed) link. The small-world character of these networks
has been pointed out [7], as well as a strong heterogeneity in
the number of links of each node (its degree). Scale-free
distributions have been observed and linked to scale-free dis-
tributions of the areas of the basins of attraction [8—10]. Fur-
ther investigations of various energy landscapes (of Lennard-
Jones atoms, proteins, spin glasses) have used complex
network analysis tools [4,5,10-12]. For instance, some works
have exposed a logarithmic dependence of the energy of a
minimum on its degree or energy barriers increasing as a
(small) power of the degree of a node [5,8,10]. However, the
relation between the energy and the degree of a minimum
has never been systematically investigated. Moreover, no
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systematic study of the connection between the network of
minima and the glassy dynamics has been performed since
the studies cited above are limited to small size systems.

Here we make an important first step to fill this gap by
putting forward a simple mathematical model of a network
of minima through a generalization of Bouchaud’s trap
model [3]. This framework allows us to use the wide body of
knowledge developed recently on dynamical phenomena in
complex networks [13] to study the dynamics in a complex
energy landscape as a random walk in a directed weighted
complex network. The corresponding heterogeneous mean-
field (HMF) theory [14] highlights the connection between
network properties and dynamics and shows in particular
that the relationship between energy and degree of the
minima is a crucial ingredient for the existence of a transi-
tion and the subsequent glassy phenomenology. This ap-
proach sheds light on the scale-free structures and logarith-
mic relations between degrees and energies and should
stimulate more systematic investigations on this issue. It also
puts previous studies of the dynamics in a network of
minima obtained empirically in a broader perspective.

We consider the well-known traps model of phase space
consisting in N traps, i=1,...,N, of random depths E; ex-
tracted from a distribution p(E) [3]. The dynamics is given
by random jumps between traps: the system, at temperature
T=1/8, remains in a trap for a time 7, exp(BE) (where 7, is
a microscopic time scale that we can set equal to 1) and then
jumps to a new randomly chosen trap; all traps are connected
to each other, in a fully connected topology. Here we con-
sider instead the more realistic case in which the traps form a
network: each trap i has depth E; and number of neighbors k;.
The system pictured as a random walker in this network
escapes from a trap of depth E; toward one of the k; neigh-
boring traps of depth E; with a rate r;_,;, which is a priori a
function of both E; and E;. Possible rates include Metropolis
(1/k)min(1,ePEE)) or Glauber k;'/(1+e PErE)) ones
[15]. For simplicity, we will stick here to the original defini-
tion of rates depending only on the initial trap, i.e., r;_;
Ze_ﬁEi/ ki'

In the fully connected trap model, all traps are equiprob-
able after a jump so that the probability for the system to be
in a trap of depth E is simply p(E), and the average time
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spent in a trap is {7)=[p(E)ePEdE. Thus, a transition occurs
between a high-temperature phase in which (7) is finite and a
low-temperature phase with diverging (7) if and only if p(E)
is of the form exp(—B,E) at large E (else the transition tem-
perature is either 0 or o) [3]; the distribution of trapping
times is then P(7)~ 7 '=7"T0, Let us see how this translates
when the network of minima is not fully connected. It is
convenient to divide the nodes in degree classes, as usual in
the HMF theory [14]. We further assume that the depth of a
minimum and its degree are related: E;=f(k;), where the
function f(k) does not depend on i and is a characteristic of
the model. The time spent in a trap of degree k is then 7
=A™ and the transition rate r;_, ; between two traps can be
written as a function of the end points’ degrees k; and k;. It is
important to recall that, in the steady state, the probability for
a random walker to find itself on a node of degree k is
kP(k)/{k), where P(k) is the degree distribution of the net-
work and (k) is the average degree [16]. The average rest
time before a hop is therefore

(1= (k)" 2 kP(k)eP ™. (1)
k

It is then clear that the presence of a finite transition tem-
perature at which (7) becomes infinite results from an inter-
play between the topology of the underlying network and the
relation between traps’ depth and degree. For instance, for a
scale free distribution P(k)~ k™7, a finite transition tempera-
ture is obtained if and only if f(k) is of the form E, log(k):
(7) is then finite (in an infinite system) for T>T.=E,/
(y-2) and infinite for T=<T,. For P(k) behaving instead as
e~**, (k) has to be of the form Eyk® for a transition to occur.
Thus, although important, the study of the topology of the
network of minima is not enough to understand the dynami-
cal properties of the system, and more attention should be
paid to the energy/connectivity relation.

To gain further insight into the dynamics of the system we
can write the rate equation for the probability p(r) that a
given vertex of degree k hosts the random walker at physical
time ¢. Since the walker escapes a trap with rate per unit time
ry=1/7, we have

Iplt)

= o) + k2 PRk — K)p (@), (2)

k'

where P(k'|k) is the conditional probability that a random
neighbor of a node of degree k has degree k’. In the steady
state, d,0,(t)=0, the solution of Eq. (2) for any correlation
pattern P(k'|k) is rip;~k [16], and the normalized equilib-
rium distribution reads

o= Tk
k N<ka>

3)

Note that the probability for the random walker to be in any
vertex of degree k is then P, (k)=NP(k)p. Since (k7)
=3,kP(k)eP'™ the conclusion is the same as before: a nor-
malizable equilibrium distribution exists indeed if and only if
(k) <o, and the presence of a transition at a finite tempera-
ture T, is determined by the interplay between P(k) and f(k).

In any finite system, the distribution P, (k) exists, and the
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FIG. 1. (Color online) Evolution of P(k;t,) for an uncorrelated
scale-free network. Here N=10%(k.=10%), y=3, and BE,=2 so that
P(k;t,) ~ k™% at short times and Peq(k)~k0, Inset: t:‘,/zP(k;tW) Vs
kit)? for t,,<t,,~ 10°.

probability that the random walker is in a node of degree k at
time t,, P(k;t,)=NP(k)p(t,), converges to P, (k) after an
equilibration time. It is interesting to study this evolution in
the low-temperature regime when it exists. Let us consider
the case of a scale-free network with P(k)~k~” and f(k)
=FE,log(k), i.e., m,=kPFo. In numerical experiments, the
walker explores an underlying network generated according
to the uncorrelated configuration model (UCM) [17], and
spends in each node of degree k an amount of time extracted
from the distribution P(7)=exp(—t/7)/ 7. Figure 1 shows
how P(k;t,) evolves from the distribution kP(k)/(k) at short
times, equal to the degree distribution of a node reached after
a random jump, to P, (k) ~k'*PEo=Y [cf. Eq. (3)] at long
times: the small degree region equilibrates first, and a pro-
gressive equilibration of larger and larger degree regions
takes place at larger times. Small degrees correspond in fact
to shallow minima, which take less time to explore, while
large degree nodes are deep traps which take longer to equili-
brate [18]. At time 7,,, one can therefore consider that the
nodes of degree smaller than a certain k,, are “at equilib-
rium,” while the larger nodes are not. Considering that the
total time 7, is the sum of the trapping times of the visited
nodes, which is dominated by the longest one kﬁEO, we obtain
kw~tv1V/(BE0). Figure 1 shows indeed that the whole nonequi-
librium distribution can be cast into the scaling form [19]

P(kst,) = £, PEO (/1)) PED) )

where F is a scaling function such that F(x)~x!'*AEo=7 at
small x and F(x) ~x!~7 at large x. This evolution takes place
until the largest nodes, of degree k., equilibrate. For instance,
for the UCM, k,~N"? so that the equilibration time is ,,
~ kao ~ NPEW2,

The evolution of P(k;?,) at low temperature corresponds
to the aging dynamics of the system, which is exploring
deeper and deeper traps. This dynamics is also customarily
investigated through a two-time correlation function
C(t,,+1,1,) between the states of the system at times #,, and
t,,+1 defined as the average probability that a particle has not
changed trap between t,, and t,,+7 [3]: this amounts to con-
sidering that the correlation is 1 within one trap and 0 be-
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FIG. 2. (Color online) Top: average escape time f,,.(¢,,) divided
by the large time prediction Eq. (7) for various N and 3. Bottom:
C(t,,+t,t,) vs t/t, for an uncorrelated scale-free network of N
=10° minima. Here y=3 and BE,=4. Inset: C vs 1.

tween distinct traps. The probability that a walker remains in
trap i a time larger than 7 is simply given by exp(—t/7;) so
that

C(t, +t.t,)= f dkP(k:1,)e”"™, (5)

where we have used the continuous degree approximation,
replacing discrete sums over k by integrals. For scale-free
networks, using scaling form (4), it is then straightforward to
obtain that the correlation function obeys the so-called
“simple” aging C(t,,+1,t,)=g(t/t,), as in the original trap
model [3] (Fig. 2).

Aging properties of the system can be measured also
through the average time t,.(7,) required by the random
walker to escape from the node it occupies at time ¢,. In
other words we define ¢,,.=(t')—t,,, where ¢’ >1t,, is the time
of the first jump performed by the walker after #,,, which
gives 1,,.(t,,) = [dkT,P(k;t,). For small ,, with respect to the
equilibration time, 7,,. is growing due to the evolution of
P(k;t,). At long enough times, in any finite system, p(z,,)
— pp? so that

kp(k)eZﬁf(k)

tolty =)= [ o ©)

Interestingly, this formula shows that, whenever P(k) and
f(k) are such that a finite transition temperature T, exists,
t,s(t,,— ) actually diverges at 2T.. The existence of a di-
verging time scale at 27, was in fact already noted in the
original mean-field trap model.

We can also consider how ¢,,. diverges with the system
size depending on temperature. For instance, with P(k)
~k™” and f(k)=Elog(k), we have f,.(t,— )=
=(k'*2BE0) / (k'*PE0). Thus, for UCM networks with k.~ N,
we obtain [20]
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Figure 2 displays a numerical check of these predictions. For
an exponential degree distribution P(k)~e ™, with f(k)
=Eyk/m, we obtain analogously 57 =(ke*PEok'm)/(jePLokim),
and considering that k,~m In N we obtain 7 =NPEo if
BEy>1, 1. ~ N2PEo- /1n N if BEy=1, teqC~N2BEo— if 1/2
<BE< 1, ti?c~lnN if BEy=1/2, t; =const if BE;<1/2.

We finally turn to the investigation of a quantity of par-
ticular relevance in random walks on networks, namely, the
mean first passage time (MFPT) [16]. Since the way in
which the phase space is explored is crucial for the dynami-
cal properties of the system, it is also interesting in the
present context to measure the MPFT averaged over random
origin-destination pairs, {fy;ppr). This procedure was for in-
stance used in [5] to extract a global relaxation time, whose
temperature dependence was tentatively fitted to a Vogel-
Tammann-Fulcher (VTF) form exp[A/(T-T,)] with however
To<T,. The framework put forward above allows us in fact
to rationalize this result. The average number of hops per-
formed by a random walker between two nodes, H;rpr, does
not indeed depend on the temperature. On the other hand, the
temperature determines the interplay between the physical
time and the number of hops: the time needed to perform H
hops is =, 7, where 7,=¢#/%) is the residence time in trap i.
Therefore, {typpr)= HMFP7<7>, where (7) depends on tem-
perature, P(k) and f(k) as given by Eq. (1). Let us consider
the concrete example of the UCM with degree distribution
P(k)~ k™7, cut-off k,~N"?, and f(k)=E, log(k). In the con-
tinuous degree approximation, this leads to

k,
(1= f dkk!PEY = 2R (8)
Since Hyppy is of order N [16], we obtain
N if BE,<y-2
t = 9
< MFPT> {Nz*'(BEO_?’)/Z if ,BEO > y- 2. ( )

In the case of an exponential degree distribution,

k
(BE,—1)— -1
- m

(BE; - 1)?

m2

k,
(0 zj dickeBE=Dkim — (BEq=Dki/m

and using k.~m log N, we obtain (ty;zpr)=N for BE,<1
and {ty;rpr) = NP0 for BE,> 1. Figure 3 shows the compari-
son of numerical data with the prediction of Eq. (9). The top
panel also shows how, interestingly, a Vogel-Tammann-
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FIG. 3. (Color online) MFPT for scale-free uncorrelated random
networks. Here Ey=1. Top: y=2.2 and N=10°; both Eq. (9) and a
VTF fit (with T,=0.023) are shown. Bottom: y=3 and various
network sizes. For B<p.=1, t«N, while 7o N>*BEo-"2 for g

> ..

Fulcher form exp[A/(T—-T,)] can also fit the data; however,
the value of 7(;~0.023 has here no clear significance, while
Eq. (9) provides a straightforward interpretation of the data.

In summary, we have put forward a simple mathematical
model for the dynamics of glassy systems, seen as a random
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walk in a complex energy landscape. This work puts previ-
ous studies on the topology of the network of minima in a
broader perspective and represents a step toward a systematic
integration of tools and concepts developed in complex net-
work theory to the description of glassy dynamics in terms of
the exploration of a phase space seen as a network of
minima. It opens the way to studies on how network struc-
tures (such as community structures or bottlenecks, large
clustering, nontrivial correlations) impact the dynamics.
Other possible modifications of our model include taking
into account fluctuations of the energies within a degree class
[using for instance conditional energy distributions P(E|k)
instead of a relation E=f(k)] and other transition rates
r(k—k’). A preliminary analysis shows that, for Glauber
rates, the same phenomenology and the same necessary in-
terplay between energy and degree described here are ob-
tained. We also hope that this work will stimulate further
detailed investigations on the relation between minima depth
and connectivity.
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